

PalmGHG Palm products greenhouse gas accounting tool Developed by WS1 based on Chase & Henson (2010) Based on LCA approach (ISO 14044) and a review of guidelines/tools Goal & scope To identify GHG emission hotspots and reduction opportunities - To monitor progress in reducing GHG emissions To report for certifications (external e.g. RED, RSPO...) Focus: to account the **bulk of GHG** emissions and carbon sequestration Assessment at the mill level (i.e. certification unit) Need for flexibility: - Default data & field data as often as possible Functional units: tCO₂e/ha, tCO₂e/Crude Palm Oil, tCO₂e/MJ palm biodiesel Physical allocations & credits for exported biomaterial or energy savings RT10 2012 Singap 10 Years Of Driving Sustainability. A Business Model For The Future.

PalmGHG development in 2012

- Update C stock values and peat emission factors from WS3
 - Peat updated; C stocks for 9 previous land uses; CO₂ and N₂O emissions
- ✓ Incorporate biofuel calculations for compliance with RED
 - Biograce model incorporated; will need replacement
- ✓ Peer review of PalmGHG
 - Undertaken between July-October 2012
- ⇒ Refine POME emissions calculation
- ⇒ Post-review development user friendly, manual

10 Years Of Driving Sustainability. A Business Model for The Future.

PalmGHG Calculator Implementation

- · Opportunities to reduce peat emissions
 - Implement peat Best Management Practices: water table... (5-10%; 2-3 yr)
 - Select peat-free (and low C) areas to expand production
 - Progressively abandon and restore current plantation on peat (43%; 15 yr+)
- Addressing POME methane emissions
 - Capture and combustion with heat and electricity recovery...? (20-25%; 2-3yr)
- Increasing efficiency of mill, energy recovery...
- Fertilisers
 - · Optimise fertilisers for yield increase and reduction of N2O
 - Yield increase tends to reduce overall impact as "fixed" emissions from clearing are divided over bigger output
- Address key knowledge gaps identified!
 - Land clearing history; data from out growers; biomass value for former land uses; etc.

10 Years Of Driving Sustainability A Business Model for The Future

PalmGHG Calculator Implementation

 Technological opportunities balanced with GHG reduction opportunity; trade-offs (water quality? Soil quality?); cost; funding opportunities (CDM; Carbon trading schemes; REDD+?...)

Improvement

Opportunities

- · Plan project implementation pipeline
- · Step-wise reduction targets
 - More stretchy reduction targets for higher emissions (more low hanging fruit)
 - OK to maintain emissions when GHG intensity is already very low
- Go public!

10 Years Of Driving Sustainability A Business Model For The Future

Next Steps

- Training
 - 6-7th December 2012, Kuala Lumpur
 - Express your interest to <u>Melissa.Chin@rspo.org</u>
- Further development of PalmGHG user-friendliness
 - Downloadable vs. Web-based?
 - Reduce chances of error (e.g. checks in input data)
 - Improve consideration of technology options
- Continued development of PalmGHG
 - Update of previous land use values
 - Update default values
 - Mill values for POME generation
 - Consideration of C fixed in conservation areas (with RT-REDD project)

10 Years Of Driving Sustainability. A Business Model For The Future.

